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Summary

This research is concerned with the general multivariate linear model
from a vector space point of view. That is the usual n x p "data matrix"

is treated as a vector thereby permitting the analysis to be visualized in the

same way that it is in the univariate case. The difference being that the

fundamental building blocks of the estimation space are p-dimensional sub-
spaces instead of the univariate cases's l-dimensional ones. | The present
paper establishes this point of view and applies it to the problem of linear
estimation. In doing so we find for example that S. N. Roy's statement of
the multivariate linear hypothesis is not the most general "estimable" hypo-

thesis. Work on appropriate tests of hypothesis is underway.
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A Geometric Approach to Multivariate Analysis - 1. Linear Estimation

Introduction. This research is concerned with the general multivariate

linear model which is treated extensively in Anderson [1] and Royl 3]. The

principal focus of attention in this work is on the vector space or geometrical

interpretation of linear unbiased estimates of linear combinations of the para-
meters in the model. Such interpretation of the univariate linear model has
proved enlightening in the analysis and theoretical development of univariate
analysis of variance, e.g. Bose [ 2], Scheffe [ 4]. It is unlikely that any of
the results in this paper are new per se, but rather that the setting is new.
In univariate an;alysis of variance the geometrical view seems especially
important Wh?l’l making a postiori inferences from the data which are not
precise enough to justify the specifit:ation of a P¥value. Such "detective
work”, as Tukey calls it, is greatly enhanced by being able to visualize the
variation due to a certain linear combination of parameters as the squared
length of the projection of the observation vectgr on a certain subspace. An
analogous geometric view for the multivariate case would be useful and it'is
the object of this work to provide the requisite preliminaries for such a view.

More work along these lines is in progress.



Minimum variance', unbiased, linear estimates (often called best estimahtes)
of linear combinations of design parameters in the univariate case are defined by
certain one dimensional subspaces of the estimation space which is in turn defined
by the design matrix. This result is useful in "visualizing” the estimates and in
defining the sums of squares due to linear combinations of the parameters. In
this paper it is shown that in the p-variate case "best" estimates of linear
combingtions of certain parameter vectors are defined by p-~dimensional subspaces
of the estimation space which is itself defined by a suitably modified design
matrix. Then linear combinations of the parameters are considered as linear com-
binations of the components of linear combinations of the parameter vectors and their
best estimates obtained. Predictably, these best estimates turn out to be defined by
certain one dimensional subspaces of the estimation space. It then follows that the
fundamental building blocks of the estimation space in the p-variate case are
certain p-dimensional subspaces ~ a natural extension of the univariate case.
Furthermore orthogonal generating sets for these subspace»s_ are readily available from
the design matrix.

In the final sections the straight forward generalizations of the usual results on
the normal equations are given together with an appropriate statement of the
Gauss—-Markoff theorem.

A comment here on notation will prove helpful. In what follows the‘ vector space
generated by the rows (columns) of a matrix A will be denoted by Vr () (VC @A) ).

Thus, for example, VC (a) = Vr (aY).



1.

Multivariate General Linear Model.

identically distributed, p-dimensional, random vectors with real coordinates.
By the assumption that these random vectors obey the general linear model we
shall mean that there exists a known, constant N x k (design) matrix AO’ an

unknown, constant k x p (parameter) matrix ©, and a random N x p (error)

matrix F so that

(1.1) x'

i
bad

2 0

Let Kyreeos X

= A 6 + F, E(F)

N

0.
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be N independent,

It is with such a model that both Anderson and Roy are concerned in their

respective approaches to estimating © and multivariate analysis of variance.
We shall consider a different approach to this model and for this approach a

different, but equivalent, formulation of (1.1) is needed. Let A
Q"l PR Uri( be the 1 x p vectors which form the rows of 8; and let _(_a_'l, ey

bethe 1 x p vectors which form the rows of F. If we let >Ip

= (aij); let

bethe p x p

—N

identity matrix, then the assumptions embodied in (1.1) can be written equivalently

as
)] “n
(1.2) =x = X, = a9
=N | % N1

b
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where the usual notation for partitioned matrices has been employed. Mak;ng
the obvious identifications we get that (1.2) can be written as

1.3) x _ A B+ 2 E(e)=0.

Np x 1 Np x kp kp x 1 Np x 1

Before proceeding we shall define two operators which will enable us to
move more gracefully between the formulation of the model in (1.1) and that

in (1.2).

Definition 1.1 (a) Let Am < 1 be an m x n real matrix with row vectors

él teees _E;'m. Define the "stretch" operator ,é) by

—

a ]
(1.4) J(Am ) = a

X n =2

L ~m

-

(b) Let Br % s be an r x s real matrix and define the "insertion"

gg_grator@/ (of B into A) by

3, B 3, B ... 3 n B-I
(}.5) O (Br < st B« n) = a, B a,, B ... a3, B
{aml B a o B an B-
where A = (a,,).
—— "m x n ij

This operator is a form of the direct product defined for example in Wedderburn [57 .

Routine calcutions are sufficient to establish the following basic properties of the



"stretch and "insertion" operators. Here A , B , C i .
m X n n x gq r X s

D ., E are real matrices of the size indicated and I isthe r x r

s X u s X u r

identity.
() /g(szu-‘-Esxu)= ‘g(szu)-"/ﬁ(Esxu)
(11) ﬁO(Am X an X p) - @(Ip:Am X n)/g(Bn X p)
(iii) B €, . ¢ Ay 1) (9(DS < b By o« q) = (cD: AB)
(iv) A =0l L), BB:A = OF:A)

where for any matrix M, M' is its transpose.

We can now write (1.3) as

e Jw=00:a) Lo+ SE, ELLEI = 0

so that we have an Np x 1 observation vector x = g (X), an Np x kp design
matrix A= 0(Ip:AO), a kp x 1 parameter vector p = X(@), and an Np x 1
error vector g = X (F). Using these definitions and the propertie; of the
"insertion" and "siretch" operators we can easily make the 'transition from (1.1) to
(1.3) and back.

If C' isan s x Np matrix, then

(l.7) E(C'x) = C'A u.

——

If we further assume that gc_l has a finite p X p variance-covariance matrix

ZO , then the variance-covariance matrix of x (denoted by VAR x) is given

by an Np x Np real, symmetric,positive definite matrix 2, defined by



(1.8) Y2 = VAR x = @ (ZO: IN)
and
(1.9) VARC' x = C' ZC.

The general linear model for the vectors Xyseeos Xy has now been
put in a form which encourages the use of vector space ideas in the analysis

of this model.

Estimable linear functions of }Hi,..., Yy . Inmultivariate analysis of

variance one often wishes to test hypotheses of the form L0 @ = 0 where

LO isa g x k matrix. Thus estimation of LO ® might naturally arise.

Note that L0 ® 1is simply g linear combinations of {;,..., Yy o Thus
we shall consider the problem of finding an unbiased estimate of a linear

combination

ﬂl _]J:]_+ ﬂz LJ_,Z + eee + 'gk L"'k

for arbitary real numbers El ' gz reeey ﬂk . We must find out which,
if any, such linear combinations have unbiased estimates ; and if an

unbiased estimate exists, what it is.

Let the p x kp mairix L' be defined by

(2.1) V=g 1. gy Laeees g L) = @(Ip: 2")

for g' = (gl,..., gk) and note that

(2.2) L'u o= gopy o fy Ly Feeet g



In our search for unbiased estimates of L'} we shall restrict our attention
to linear functions of x. Thus we only consider functions of the form C' x

where C is an Np x p real matrix.

Definition 2.1 ~ An m x 1 vector ¢ will be said to be estimable with

respect to x if there exists a linear function of x which is an unbiased
estimate of o .
Actually when considering L' 4 we can be more specific about the

linear function of x in question.

\\
Lemma 2.1 The linear function L'y is estimable if and only if there
exists N real numbers c;,..., ¢y sothat E(C' x) =1'y for C defined
by
2.3 C'=[c,I ,c, I ,... c.1I = I :c').
(2.3) L Lge oy 1 vl = 00 ).
Proof: A general linear function of x appropriate for estimating L'y would

be C'x for C an Np x p matrix. Requiring such an estimate to be unbiased
means that C' A= 1'., Routine considerations of this equation show that one need

only consider C of the form @(Ip:g_) for ¢ an N x 1 real vector.

Since C' x for C as in (2.3) is simply a linear combination of
Xt Kyseees '&N' viz, clgc_l+cz_>gz + ... +cN_>_cN, the lemma is

both expected and welcome. From lemma 2.1 we see that the following

theorem is true.



Theorem 2.1 A necessary and sufficient condition for L' i to be

estimable is for (4,..... g, ) tobe alinear combination of the rows

of Ay. Orinterms of (1.2) L' p is estimasble if and only if L' isa

: : ; A . N . oot . At
linear combination of O(Ip._@_l), & (Ip._a_z),..., @(Ip.gN) for

a' ,..., a8, therows of A

=1""""" TN 0°

Proof : From the lemma we have that estimability is equivalent to the
existance of a real vector ¢ so that @(Ip:g_') @ (Ip: AO) = @(Ip: ')

which implies ¢’ AO = ',

Notice that the rows of a matrix of the form

(2.4) [a I

lp’aZI

ceesa 11 = I :a')for a'=(a ,..., a
ag I O, 2') for a' = (g o)

p rs
form an orthogonal set of gp~dimensional real vectors which generate
a p~dimensional subspace of the gp-dimensional real vector space qu.

Similarly for the column vectors of the transpose of the matrix in (2.4).

Thus we make the following definition.

Definition 2.2 If a isa g x 1 real vector, then we shall call

(‘)(Ip: a) a p-dimensional orthogonal generating set in R°°. The vector
2 will be called the defining vector of @(Ip: a). When the dimensions
are understood from context we shall simply use the abbreviation o.g.s. for

an orthogonal generating set. We shall speak of submatrices of the form of

(2.4) which form rows (columns) of a matrix as row (column) p-dimensional

0.g.s. in qu.



ap much as we do a

We shall view a p-dimensional o.g.s. in R
l-dimensional vector in Rq. It is clear that for p=1 ano.g.s. is a
vector which in turn is a generating set for a l-dimensional subspace of
Rq. Definitions of orthogonality, independence and equivalence of o.g.s.
are similar to those for vectors and are formally stated below. In order to

avoid awkward notation the plural of o.g.s. will also be written o.g.s.

and the number inferred from context.

Definition 2,3 (a) The vector space generated by a set of r o0.g.s. is

rows of the r o.g.s.

(b) Two o.g.s. will be said to be equivalent if they generate the same
subspace of RV..

(c) Two o.g.s. will be said to be orthogonal if the corresponding

g-dimensional defining vectors are orthogonal. A set of 0.g.s. will be called

an orthogonal set if every two distinct 0.g.s. are orthogonal.

(@) A setof o.g.s. will be said to be linearly independent if the corresponding

set of defining vectors is linear_ly kindependen’»c».

Lemma 2.2 If V is a subspace of qu generated by k p-dimensional o.g.s.

@(Ip: _@_l), .y @(Ip: _z_i_k) then the space generated by a p-dimensional o.g.s.

@ (Ip: c) is contained in V if and only if there exist real numbers d

e e l RN d

k

such that

(2.8) ¢ = dl_@_l+... +dk_a_k.



Proof: The sufficiency is clear. The necessity follows by considering the

orthogonal complement to the space generated by {_a_l reaey gk} ; and the

fact that if a, b are orthogonal vectors in R4 , then _I’I_l_'l @ (Ip: a') and

_Ir_1'2 @ (Ip: b') are orthogonal vectors in R for m, and m, arbitrary
P x 1 vectors.
Note: This means that if the subspace generated by an o.g.s. C isin V,

C=d A +d,A +...+d A for A = @(Ip: a,) i=1, ... k.

In this context we can restate the result of Theorem 2.1 as L' J is
estimable if and only if L' generates a subspace of Rkp contained in the sub-
space generated by the row p-dimensional o.g.s. in Rkp of A, i.e.

V (L) <=V _(A).
C r

k
Definition 2.4 The subspace of R P defined by the row . p-dimensional 0.g.s.

of A will be called the parameter space for the model (1.2) and denoted by Vr a).

Notice that the notational convention established in_ the introduction and definition

2.3 (a) dictate this notation.

Lemma 2.3 ;fthe rank of A

> rank of Ay is s k< N, therank of A is sp and the

dimension of V (&) is sp.

Proof: The result follows immediately from the definitions of A and Vr ().

We have thus determined which linear functions Hyoreees Bk have linear

unbiased estimates. We shall have more to say about these estimates in section 4.
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Estimable functions of the components of W . In section 2 we concentrated

on linear functions of _U;l , &2 seees M This led to investigation of certain

k'
p-dimensional subspaces of the parameter space, Vr(A)' In this section we
shall be interested in certain l-dimensional subspaces of Vr (A) as we shall
be interested in estimating linear functions of the (scalar) components of K
as opposed to the (vector) components [y, ..., J“—Lk .

Our study in section 2 was motivated by the consideration of the hypothesis
LO ® = 0. A more general hypothesis which suggests estimation problems of the

form mentioned in this section is

(3.1) B S M _ 0

g x k k xp D X U g X U

where rank of B (tk B)is g< rk A, and tk M=u p.

0

If _}Q_,=(bil,..., b,

; lk) is ith row of B and r_n_j is jth column of M, then

(3.1) can be stated as follows

(3.2) Q B2 =
gu x kp kp x 1 gu x 1

where Q 1is a matrix whose gu rows are given (in any order)by

(3.3) gy = (b, mt, by mi,..., by _rnj) = @(mjzgi)

for i=1...49,j=1,..., u. We have the following lemma.

Lemma 3.1 If Q is defined as in (3.3) and B and M are defined as in (3.1),

(3.4) rkQ = (rk B)(rk M).
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Proof : The result follows from a straight forward analysis of the
g u @
equation i? : jz 1 Y i gij = 0 using the fact that a5 = (_mj : Qi).

It should be noted that if Q is an arbitrary gu x kp matrix of rank gu,
then there do not necessarily exist matrices B and M so that (3.2) implies (3.1).

Let us consider an arbitrary row of Q, g_' K and investigate the problem of
finding a linear unbiased estimate of E'ij U -~ a linear function of the components

of L. For convenience we consider —qlll L . Now

ay u= Owpp) b= Ow;r) Oa:p) b= L)L

where L'1 is the 0.g.s. given by @ (Ip: Q'l). Thus glll U is a linear

function of the components of a linear function of 9_1 teewy “k .

If L'1 K is estimable, there exists a p-dimensional o.g.s. Cl in RNp

so that E(C'lg)-—" L. Thus E(_rg'l C'. x)=m', L' W, i.e. m' C'

L 1 1 71 171 %

is a linear unbiased estimate of q'11 i . Note that Q'l C'1 isa 1 x Np

vector so that _1r_n_'l C'l x 1is of the form ¢' x and thus qll K is estimable.

Theorem 3.1 Let m be a p x 1 non-zeroreal vector and let L be a

k
p- dlmensmnal 0.9.8. 1n R P . Then a necessary and sufficient condltlon for

m' L' [ tobe estimable is that L' it be estimable. Furthermore if L' LK is

N
estimable, then there exists a p-dimensional 0.g.s. in R ©, say C, such that

m' C' x is allnear unblased estlmate of m' L' K.
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Proof : The sufficiency is clear. For the necessity, if m' L' U is
estimable, then there is an Np x 1 real vector ¢ sothat ¢' x is an
unbiased estimate of m' L' K. Thisresultsin ¢'A=m'L'; andif b

is such that L= @ (Ip: b), it follows that for m # 0.b is in the space
Vr (AO). Thus Vc (L) < Vr(A) and the proof is complete. Thus g‘ij K is |

estimable if and only if the ith row of B belongs to Vr(AO).

Notice that m' L' generates a l-dimensional subspace of Vc (L) ;
in fact, every l-dimensional subspace of VC (L) is generated by m' L' for
some vector m. Furthermore if rk A = kp, then for every o.g.s. L, L' K
is estimable ; and then every m' L' L has a linear unbiased estimate.
Recall that rk A =kp implies dimension of Vr(A) (dim Vr(A) ) is kp. More
generally suppose dim Vr(A) = gp, s <k and suppose Ll , L2 fee s Ls are
s independent p-dimensional ¢.g.s. in Rkp each generating a subspace of

Vr(A)' Then any vector in Vr(A) can be written as

(3.6) m', Ll+1n_2 L2+...+_IQSLS

for a unique choice of the s p x 1 wvectors Ln_l teaey _r_n_S .

Thus we have the following theorem.

Np

Theorem 3.2 If £ € V (A), there exists a vector ¢ € R™" such that ¢'x

is a linear unbiased estimate of .£' i . Furthermore since £ can be written

as in (3.6), a choice for ¢ would be



—]12 =
(3.7) ¢ =m C' 4+ m', C, +...+ m C

N
where Ci is a p-dimensional o.g.s. in R P

such that E(C'i X) = L'i o

for i=1,..., s.

Let us now consider the hypothesis (3.1) or equivalently (3.2) in light

of theorems 3.1 and 3.2. The hypothesis (3.2) requifes that in the estimable

case certain one dimension subspaces of Vr(A) be orthogonal to K . Further=_

more these one dimensional spaces are constrained to lie in VC(L) for certain
0.g.s8. L. Notice that all one dimensional subspaces in Vr(A) are not of
this form, e.g. if k=p=2, (1,0,0,1) does not lie in a subspace of VC(L)
for any o0.g.s. L. Theorem 3.2 shows that more general linear hypotheses
can be considered without sacrificing estimability. In fact, there is a one to
one correspondence between linear, estimable hypotheses and the one dim~

ensional subspaces of Vr(A)'

Notice the relationship between the vector £ in the parameter space
Vr(A) as given in (3.6) and its "estimate" as given in (3.7). In section 4

we shall make this relationship even more specific.

The fundamental theorem of linear estimation. In this section we shall

consider the problem of finding the "best" estimate of an estimable linear

function of El P Ek , l.e. finding the "best" estimate of L' U for L,
k

a p-dimensional o.g.s. in R P such that VC(L) < Vr(A)' We now state a

lemma which will be useful in developing the idea of "best" estimate.



Lemma 4.1 Let C be a p=-dimensional o.g.s. in RNp and let ¢

be the N x 1 definirg vector for C. Then

(4.) VAR(C' x) =C'C T = (2Z,.

We shall call the non-negative number ¢' ¢ associated with the o.g.s. C

the covariance coefficient of C' x.

Proof: VAR (C'x)=C'Z C = @(Ip:_q') @(ZO:Ip) @(Ip:_c_:)

= @(xp:g) (9(Ip:_q) @(20, 1)

i

C CEO=_C_:,_QZO

Thus we make the following definition.

Definition 4.1 “A.best ©.g.sS. estimate of L' w will be an estimate of

———

which satisfies:

(1) E(C'x) = L' 1L

(ii) The covariance coefficient of C' x is at most that of

any other o.g.s. estimate satisfying (i).

In other words a best 0.g.s. estimate of a linear combination of Woseees L
: -1 “k
a linear function of _}_cl, ses ﬁN

coefficient,
We shall now set about showing that there is a unique best o0.g.s.
estimate for an estimable L' w - loward this end we shall decompose the

—

. Np .
observation space R P into two orthogonal subspaces.

-13~

is

which is unbiased and has minimum covariance
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Definition 4.2 _L_gfc VC(A) be the subspace of RNp generated by the k

column p-dimensional 0.g.s. of A. We shall call V_(A) the estimation

space. Let V(E) be the subspace of RNp generated by {C: E(C' x) =0,

C a p-dimensional o.g.s. in RNp} . We shall call V(E) the error space.

We shall abuse the notation by saving an o.g.s. belongs to VC(A),
for example, when we mean the subspace generated by the o.g.s. is

contained in VC (a).

By using the fact that the defining vectors of the o0.g.s. which generate
VC(A) and V(E) generate s and N - s dimensional subspaces of RN
respectively and that RN is the direct sum of these subspaces we can
establish the next lemma. This lemma may also be proven by considering the
N-dimensional vector space of o.g.s. over the field consisting of elements

of the form aIp , a€R. Here s=rk AO .

Lemma 4.2 (i) The estimation space VC(A) is orthogonal to the error

space V(E) and RNp is the direct sum of VC(A) and V(E).

(i) If rk A= sp < kp, then dimension VC(A) = sp and dimension

V(E) = (N - s)p.

Np

(iii) V(E) = {ceR ": E(c'x)=0}

(iv) Given a p-dimensional o.g.s. D in RNp there exist unique

p-dimensional o.g.s. C and F sothat D=C+F, C belongs to

VC(A), I belongs to V(E), and VC(C) is orthogonal to VC(F).

PO — ot s e
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We are now in a position to state a theorem which locates the unique

best 0.g.s. estimate of an estimable linear combination of El PR _l_l_k

in the space Vc (a).

Theorem 4.1 (Fundamental Theorem of Linear Estimation).

If L' U is an estimable linear function of LJ«_l s eo s Ek then there exists

a unique o.g.s. C in VC (A) such that C' x is the best 0.g.s. estimate

of L' W.

Proof: Since L'l is estimable, there exists an o.g.s. D in RNp SO

that E(D' x) =L'W. By lemma 4.2 (iv), there exist unique o.g.s. C in VC(A)

and F in V(E) suchthat D=C +F. Then since EC' x=1'L and VAR(D'x) =

i

(C'+F) (C+F)Z, = C'CZy +F' FZ, > VAR(C'%), it is clear that C' x is the

unique best 0.g9.s. estimate of L' &

Corollary 4.1.1 If L' K is an estimable linear function of El reses Ek ;

there exists a p-dimensional 0.g.s. in Rkp, Q, sothat Q' A'x isthe

best 0.g.s. estimate of L' .

Proof: Since C is in VC(A), lemma 2.2 implies that there exist real

numbers d,,..., Q

1 so that C=qlA +"'+qkAk where Ai arethe

1
column o.g.s. of A. The result follows by defining Q = O (Ip :q) for

k

g =g q).
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Since the idea of a best estimate of a real parameter is usually associated
with minimum variance, linear, unbiased estimates, we state the following

definition generalizing this idea to parameter vectors.

Definition 4.3 A best estimate of an m x 1 vector ¢ basedonan M x 1

observation vector x will be any linear function of x which is unbiased and

whose components have minimum variance.

Now we have the following corollary to Theorem 4.1 .

Corollary 4.1.2 The best o.g.s. estimate of an estimable linear function

L' K is the best estimate of L' W .

Notice that in general the condition of having minimum covariance coefficient
is stronger than that of having minimum component variance in that the former
places constraints on the covariances while the latter does not.

The case of linear functions of the components of ¥ can now be viewed in

. - Np o
the light of the decomposition of R 7, and the following improvement of theorem

3.2 can be obtained.

Theorem 4.2 If g € Vr (A), there exists a unique vector c € VC (A) such that

-

c' x is the best estimate of £' U, i.e.

) B m= g e

(ii) Var (¢' x) is less than the variance of any other linear function

L r Rt e e 1 e Ay 1 o e o e —————

of x which satisfies (i).
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Furthermore if {Cl, voos CS } is a set of orthogqnal p—dingensional 0.9.S.

which generate VC () and {Ll, ey LS} is the corresponding set of

k
p-dimensional o0.g.s. in R p, i.e. E(C'iz) = L’i LM i=1,...,s, then

[ A—

(4.2) ¢'=m' . C +m', C'_ +...+m C'S

171 2 2 ~s
where £'=m' L' +...+ m' L' .
— 1 1 s s
Proof: Using the notation of the theorem define p-dimensional o.g.s.
Floeens By so that {Cl,...,Cs, Pl""’FN-s} is an orthogonal

N : .
set of 0.g.s. which generates R P . Notice that {Fl, eees F S } ' generates

N —
V(E). It is easy to show that {Ll' “ees ]'_.S } generates Vr(A)' Thus since
1 e Vr(A) there exists a d € RNp sothat E d' x = ' u. Furthermore

there exists unique p x 1 vectors m, ,...,m n n o so that

1 =g’ =1 SN~
ga' = __m_l Cl +...+ _m_SCS+glFl+...+_11N_SPN_S
Let ¢' = _r_n_'l C'l+...-i-r_n_'S C'S and the result follows from the orthogonality of

VC(A) and V(E) and lemma 4.2 (iii).

The "variance" of the best estimate of L' K . In this section we shall

develop results which will enable us to calculate the variance~-covariance
matrix of the best estimate of an estimable linear function L' K. We shall
first need to continue the investigation of the structure of the best estimate

begun in corollary 4.1.1.
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Recall that we have shown that there exists a unique o.g.s. C in
VC(A) so that C' x is the best estimate of L' M4 and that (corollary 4.1.1)
there is a p—-dimensional o0.g.s. in Rkp, Q, sothat C' = Q' A'. Thus
(5.) Q'A'Ap = E(QQ'A'x) = L'g, YU,

which means that Q must satisfy
(5.2) A'AQ = L.

Consistency of (5.2) follows from the fact that the estimability of L' &

implies L =A'B for B some p-dimensional o.g.s. in RNp so that

(5.2) is equivalent to

(5.3) ArAQ = A'B

and the following Theorem {Bose's notes p. 52A) applied to the *column

equations™ in (5.3)

Theorem 5.1  The equations

AMAg = A'b

for g have a solution and A g i.swt_.miquely determiqig.

However Theorem 5.1 gives us more than just consistency of (5.2). For

A
suppose | 1is a solution of
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(5.4) A'A , = A' x

then best estimate of L' u is given by

' 1 . 1 1 LA T : A
(5.5) Q'A E—QAA&-L o
Thus we have the following theorem.

Theorem 5.2 If L', 1is estimable, the best estimate of L' |, is L' CL

where /L\L is any solution of (5.4). If ' i, 1is estimable, the best estimate

— e y— [ —

RN
W

—

of g' y is ¢

Although (5.4) may not have a unique solution, L' CL will be unique no

i

matter which solution, /L\L' of (5.4) is used since L'?L = Q' A'A tL and by

— —

A
theorem 5.1 A U is uniquely determined. The equations (5.4) are called the

normal equations. If we introduce the conditional inverse of A' A into the

discussion we get that a solution of (5.4) is given by

(5.6) [ = (A'A)*A' x

——

for (A'A)* satisfying (A'A) (A'A)* (A'A) = A'A, i.e. (A'A)* is a conditional

inverse of A'A ,
We are now in a position to state the following result.

Theorem 5,3 If L'y is estimable the variance covariance maitrix of the

po—— L bn

best estimate of L' y is given by

(5.7) VAR (L'(})=QABQZ, = L'QZ, for Q satisfying (5.2).
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Furthermore if {Cl tee oy CS} is a set of orthogonal p-dimensional

0.g.s. which generate VC(A) and {Ll feees LS } is the corresponding

kp

set of p-dimensional o.g.s. in R then we have the following corollary.

Corollary 5.3 If g € Vr(A) then the variance of the best estimate of

£' 4 is given by

S
N
(5.8) Var (£ L) = X m' QUA'AQ, Z. m, N
- , i i i 0 i ~
i=1
S
- .Z _rr_ll Lin Z0 ﬁ1
i=1
S
= ,@l '
Z A g my Zymy
i=1
for _E_' = ;n__‘l L‘l +'...+ Q_'S L‘S and £i ) 4 the defining vectors of

0.g.s. L., Q,,i=1,...,s. Here Q, satisfies A'AQ, = L,.
i i R i i

The Gauss~Markoff Theorem. For completeness we mention the Gauss-Markoff

Theorem even though it contains nothing new in this case.

N
Theorem 6.1 (Gauss-Markoff). Suppose U is a vector which minimizes

(x=-AH) (x-Au), i.e. the squared length of the deviation of x {from its

>

A 1
mean. Then L' is the best estimate of L' K for L' M estimable and _@_ B

is best estimate of __Z[' B for £ € Vr(A)'
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